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Non-dimensionalization and dimensional analysis

Dimensional analysis is one of the most useful techniques for deducing interesting insights into a
physical system. The two exercises deal with basics of dimensional analysis.

Exercise 1 The thrust T developed by a ship propeller in deep water (dimensions of T =
MLT−2) depends on the radius a of the propeller, the number of revolutions per minute n, the
velocity V with which the ship advances, the gravitational constant g, the density ρ, and the
kinematic viscosity ν of the water ([ν] = L2T−1). Show by using the dimensional analysis that
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This exercise shows the use of scaling argument for a ”mathematical result”.
Exercise 2 Sobolev inequality
Consider an arbitrary smooth function u : Rn → Rn such that u = 0 outside an n-dimensional cube
of length R. Using scaling arguments, for n > 2, derive a condition on q such that there exists a
C > 0 independent of u for which it holds that

(∫
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|u|qdx
) 1
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(∫
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) 1

2

. (1)

Hint: Consider y = λx and w(x) = u(y) where λ > 0 will be chosen later. And notice that
the above inequality holds for w. Now for u(y) we derive a similar inequality but for a different C

depending on λ and n. Also, note that

∫
Rn

|u(x)|2dx = λn
∫
Rn

|w(y)|2dy.

To extend the result further, let p, n be such that 1 ≤ p < n. Now repeat the above exercise for
the case when(∫

Rn
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. (2)

Epidemiological Modelling

The emergence of new diseases and their reoccurrence have led to an interest in studying the
spreading of infectious diseases. The mathematical modelling is an important tool in analysing the
spread, impact and control of such diseases. This exercise is aimed at familiarizing the students
with some of the basic models and tools used in the mathematical studies of infectious diseases.

Exercise 3 – Warm up exercise: simple model
We shall consider an elementary model which is inadequate but is simple to analyse and will warm
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us up for considering further models. Let

S(t) = Number of susceptibles at time t

I(t) = Number of infectious at time t

N = Total number of population

β = Average number of adequate contacts of a person per unit time

The model is given by

dS

dt
= −βIS/N S(0) = S0 ≥ 0,

dI

dt
= βIS/N I(0) = I0 ≥ 0,

(3)

with I0 + S0 = N .

a. Introduce non dimensional variables i = I/N, s = S/N and obtain an ODE for i(t) using the
system above. Obtain an explicit solution for this ODE. Is this solution unique?

b. Compute the equilibrium points of the ODE and find out the nature of these points. Conclude
that the solutions i(t), s(t) lie between zero and 1 for all time t, if the starting points are
between zero and 1.

c. Implement an Euler explicit scheme. Choose β = 0.5, i0 = 0.1, s0 = 0.9 for your numerical
tests. Take time steps h = 5, 1, 0.2, 0.04, 0.008, 0.0016. What is the condition for the time
step to ensure stability of the solution? What are the conditions on the time step for the
solutions to respect the equilibrium solutions as bounds? Obtain the error as a function of
time step and check the convergence rate. Implement Euler implicit scheme and take the
same time steps as for the explicit case. Compute the error and convergence rates. Comment
on the results. If time permits it, implement a higher order integration scheme (Runge-Kutta
4) and check the convergence rate. Plot the solution and note the large time asymptotes.

d. Check that i(t) + s(t) = 1. Does your numerical scheme preserve this? Show this.

Exercise 4 – Classical SIR model
In addition to the previous variables, we will introduce the removal of people after they are either
infection free or succumb to the infection. Let

S(t) = Number of susceptibles at time t

I(t) = Number of infectious at time t

R(t) = Number of people removed from the infectives

N = Total number of population

β = Average number of adequate contacts of a person per unit time

γ = Removal rate of people per unit time per infective,

and we define, σ = β
γ . The classical SIR model consists of
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dS

dt
= −βIS/N S(0) = S0 ≥ 0,

dI

dt
= βIS/N − γI I(0) = I0 ≥ 0,

dR

dt
= γI R(0) = R0 ≥ 0,

(4)

with I0 + S0 +R0 = N . For γ = 0, the model reduces to the previous model.

a. Define the non-dimensional variables i = I/N, s = S/N, r = R/N using N using the total
population as the reference quantity. Obtain the non-dimensional equations. Verify that
i(t) + s(t) + r(t) = 1.

b. Find the equilibrium solutions. Show that 0 ≤ i, s, r ≤ 1 and that

i(t) + s(t)− 1

σ
ln(s(t)) = i0 + s0 −

1

σ
ln(s0), (5)

holds and hence is an invariant curve for the differential equation. Plot the level curves.

c. Implement Euler explicit method and plot i(t) and s(t) and interpret the results. For the
numerical simulations, you may use β = 0.5, σ = 0.5, 1, 2 and i0 = 0.2, s0 = 0.8. Try for
different values of initial conditions and interpret the results. Check that the numerical
solutions indeed respect (5).

d. Verify the following theorem by the numerical experiments. If σs0 ≤ 1, then i(t) decreases
to zero as t → ∞. If σs0 > 1, then i(t) first increases up to a maximum value imax =
i0 + s0 − 1

σ −
1
σ (ln(σ0)) and then decreases to zero as t→∞. The susceptible fraction s(t) is

a decreasing function and the limiting value s∞ is the unique root in (0, 1σ ) of the equation

i0 + s0 − s∞ +
1

σ
ln(s∞/s0) = 0. (6)

Interpret the implications of the above theorem.

e. The number of susceptibles s0 and s∞ are effectively known by medical tests of the population.
Assuming that they are known and i0 is small, estimate σ.

f. Linearize the equations around the equilibrium points. Compute the eigen values and the
eigen vectors of the Jacobian around the equilibrium points. Can you conclude about the
nature of these points?

g. Plot the phase portraits for i and s for σ = 0.5 and 2 and with fixed β = 1. Describe
qualitatively the dynamics of the system. Comment on the following statement: ”The final
number of susceptibles is as far below the threshold for an epidemic as the initial number was
above the threshold”.

Exercise 5 – Extension of the model
A general model for epidemiology is MSEIR model with the passively immune class M, the suscep-
tible class S, the exposed class E, the infective class I, and the recovered class R. Quite often, one
considers only some of the variables and accordingly gets the name. For example, we will consider
a non-dimensional SEIR model
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ds

dt
= −λ(t)is+ µ− µs, s(0) = s0,

de

dt
= λ(t)is− (ε+ µ)e, e(0) = e0,

di

dt
= εe− (γ + µ)i, i(0) = i0,

dr

dt
= γi− µr, r(0) = r0,

(7)

with s + e + i + r = 1 and the variables s, e, i, r are the non-dimensionalized counterparts of
S,E,I,R (for example, s = S/N with N being the reference population). Moreover, λ, µ, ε, γ > 0
are parameters of the model. Note that we have chosen λ to be time dependent. As we increase
the number of variables, our model becomes ”rich”, however, one of the downsides is that we have
several parameters for this model. These coefficients are often not known and need to be fitted.

a Discuss a possible interpretation of the model. For example, discuss how the growth of one
variable gets affected by others.

b Implement an Euler explicit scheme and perform simulations for the model. Choose λ(t) =
exp(sin(2t)) and ε, µ, γ = 0.5. Choose the initial conditions appropriately. What would be a
possible interpretation for periodic λ? Interpret the results for your numerical simulations.

c What are the equilibrium solutions? Does the numerical simulations help in guessing the
equilibrium solutions and their nature?

Suggested reading

Herbert W. Hethcote, The Mathematics of Infectious Diseases, SIAM Review Vol. 42, 2000,
pp. 599–653. This has an extensive set of references also.
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